

Tributary Underflow along the Northern Boundary

Presented by Alex Moody August 30th, 2019

Previous recommendation

- Calculate relationship between elevation and infiltration to calculate underflow
- Make Boise Front
 Recharge an adjustable
 parameter and use the
 various estimates to
 establish an acceptable
 range
 - 0 9000 AF Annually
- Will not contribute significantly to predictive uncertainty

Updates

- Modified Wylie's infiltration fraction method to use raster math
- Spatial distribution: delineated tributary basins and assign underflow to grid cells
 - Expand to Payette mountain front
- Temporal distribution

Tributary basin delineation

- 1. Calculate drainage directions
- 2. Accumulate flow
- 3. Extract streams and define outlet at model boundary
- 4. Delineate all cells draining to outlet

Proposed tributary basins

- Align well with National Hydrography Database watersheds and streams
- Some cells recharged by multiple tributaries

Boise

Cat

Payette

Recharge contributing to underflow

Temporal distribution

- Calculate monthly proportion of annual precip in each trib from PRISM
- Scale annual underflow for each month

Small Basin Contributions

- Do small tributary basins contribute to underflow?
- Dry Creek / Reynolds Creek conceptual models
 - Chauvin et al, 2011; McNamara et al., 2005
 - Winter precip replenishes soil water and ground water deficit before delivery to stream.
 - Streamflow/groundwater fluxes decoupled after snow ablation. Subsequent precip does not contribute to streamflow

Source	Boise Front Recharge (AF)	% of Annual Total Budget*
This analysis	9,100	.89
(Payette)	18,834	1.8
Wylie 2018	515	.05
Petrich and Urban (2004)	905	.09
Urban (2004)	4300	.42
Newton (1991)	Small	
Welhan (2012)	9,000	.88.
SPF (2007a)	3900	.38
SPF (2007b)	5580	.55

^{*1,020,300} AF (Urban, 2004)

Conclusions + Suggestions

- Higher estimates of recharge due to finer resolution sampling (30m vs 1 mile cells)
- Mean is near max value of prior estimates
- Only a few catchments will have significant underflow
 - Dry Creek, Indian Creek, Willow Creeks
- Use delineated subbasins to route underflow to cells
- Adjustable parameters
 - Monthly multiplier
 - Multiplier on annual recharge (0 X% of average annual precip in basin)

Tributary basin delineation

Tributary basin delineation

Build flow accumulation raster derived from 30m DEM

1. Calculate drainage directions

<u>Tributary basin delineation</u>

- 1. Calculate drainage directions
- 2. Accumulate flow

<u>Tributary basin delineation</u>

- 1. Calculate drainage directions
- 2. Accumulate flow
- 3. Extract streams and define outlet at model boundary

